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Abstract

We present a derivation of the linear heating Johnson—Mehl-Avrami—Kolmogorov (JMAK) equation for a constant
nucleation rate and diffusion-controlled growth, in the hard impingement approximation. The result is compared with the
linear heating JMAK equation for interface-controlled growth, and with the isothermal JMAK equation. We show that all
approximations made in deriving the JMAK equations (i.e. including previous work) hold when the activation energies
involved are large compared to the thermal energy, which turns out to be virtually always the case. Finally, we demonstrate in
a simple way that within the JMAK framework, peak shift methods such as Kissinger analysis, Marseglia and Ozawa plots are
formally equivalent and may all be used to analyse experimental data. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 64.70.Kb; 81.10.Aj; 81.30.Hd
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1. Introduction

Johnson—-Mehl-Avrami—Kolmogorov (JMAK) trans-
formation kinetics describes the extent to which a
material is transformed during a certain phase transfor-
mation, as a function of temperature and time. This
information is contained in the JMAK parameters,
which are constant with respect to time and tempera-
ture. Crystallisation of amorphous materials and other
solid state phase transformations are examples of
transformations that are described by JMAK kinetics.
The equations that describe the JMAK Kkinetics were
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first derived for transformations under isothermal
annealing conditions [1-10]. Efforts have also been
made to derive the JMAK equations under linear
heating conditions [11-14]. The main interest for
the linear heating JMAK equations lies in the fact
that linear heating experiments are much faster than
isothermal experiments, so that it takes less time to
determine the JMAK parameters from a linear heating
experiment. Also, isothermal experiments have the
drawback that the sample needs to be heated to the
desired temperature in a time that is much smaller than
the transformation time. However, it is not obvious
how the parameters determined from isothermal and
linear heating experiments are related. Here, we shall
try to clarify this problem, following a rather formal
approach. The approach is more general than that
of Vazquez et al. [14] as we do not assume that the
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progress of the transformation is determined by the
number of atomic jumps.

We shall start from the equation that gives the
volume fraction of the transformed material, x, as a
function of time, ¢, for transformations controlled by
nucleation and growth [1-9]

x(t) = 1 — exp[—xe(1)], (la)
with

t
xelr) = / W(r, D7) dr, (1)
0

where v(t, 7) is the volume of a particle of the product
phase, nucleated at time 7, as a function of time and
I(?) is the nucleation rate at time ¢. Eq. (1a) accounts
for the interaction between the particles in the latter
stages of the transformation: nuclei are formed only in
untransformed material and the particles will even-
tually impinge. The factor x. is the ratio of the
extended volume (see [9] for a comprehensive expla-
nation) of the transformed material to the real volume
of the system. Assuming isotropic growth in b dimen-
sions (i.e. b = 1 when the nuclei grow out to a needle-
like shape, b = 2 when they look like discs and b = 3
for spherically shaped particles of the product phase),
the nuclei formed at time t will have a volume

v(t, T) :g[R(t,T)]b, 2

where g is a geometrical constant of order unity and R
the radius of the particle. When the growth rate of the
particle is G(?), its radius will increase as

R(t,7) = / ZG(G) do, 3)

where 0 is a dummy parameter of dimension time, that
runs from 7 to . Now, for any particular case of
nucleation and growth, Egs. (1b)—(3) can be evaluated
along a temperature—time path of interest. In the next
paragraph, we shall state the results for isothermal
conditions.

2. The isothermal JMAK equations

We will first present the results of the derivation of
the isothermal JMAK equation. This allows us to
introduce the parameters and concepts that are char-
acteristic to JMAK kinetics in the context of the more

familiar isothermal JMAK equations and to point out
exactly where the differences between isothermal and
linear heating kinetics lie.

2.1. The isothermal JMAK equation
The volume fraction of the transformed material as

a function of time during isothermal annealing is given
by [9]

x(t) = 1 — exp(—kt"), (4a)
with

AH
K(T) = koexp (_ kB_T> . (4b)

These equations are known as the isothermal JIMAK
equations. n, AH and kg are the JMAK parameters,
which will be discussed in more detail below. kg is the
Boltzmann constant. Egs. (4a) and (4b) have been
derived from Egs. (1a)—(3) for a number of special
cases [10]: site saturated nucleation, a constant
nucleation rate, an increasing/decreasing nucleation
rate and for interface- and diffusion-controlled
growth, assuming that the nucleation rate, I(7T), and
the growth rate, G(T), have an Arrhenian temperature
dependence:

E,
I(T) = Ipexp <— ks > (5a)
and
G(T) = Gpexp < kigT> . (5b)

E, and E, are the activation energies for nucleation
and growth, respectively, and I and G are constants
with respect to temperature.

The exponential factors in Eqs. (5a) and (5b) are
Boltzmann factors. They correspond to the fraction of
atoms that have a thermal energy in excess of E;, or E,,
respectively. In Boltzmann statistics, these activation
energies generally are a function of temperature, but
are essentially constant at relatively low temperatures,
i.e. when

E, > kgT (6a)

and

E, > kgT. (6b)
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These inequalities are of crucial importance in JMAK
kinetics. For isothermal kinetics they are implicitly
assumed to hold by taking the temperature depen-
dences of the nucleation and growth rates to be
Arrhenian.

Combining the cases considered, the JMAK para-
meters can be expressed in terms of the nucleation
and growth parameters [10].

For the Avrami exponent, n, we have

n=a+ bc, @)

where a is the nucleation index (a =0 for zero
nucleation rate, 0 < a < 1 for a decreasing nuclea-
tion rate, a = 1 for a constant nucleation rate and
a>1 when the nucleation rate increases as a
function of time), b is the dimensionality of the
growth and c is the growth index (¢ = 1 for interface-
controlled growth and ¢ = 0.5 when growth is diffu-
sion-controlled). For the effective activation energy,
we have

AH = aE, + bcE,. (8)

From Egs. (7) and (8) we see that AH/n, the parameter
obtained from Kissinger analysis (see Section 4.1) is
equal to the average of E,, and E,, weighted by a and
bc, respectively.

The expression for ky is

ko = 215Gy, ©)

where g is the geometrical constant of Eq. (2). Eq. (9)
is not valid for a = 0; when the nucleation rate is zero,
I§ should then be replaced with N, the (fixed) number
of nuclei per unit volume.

It is emphasised that Egs. (7)—(9) are nothing but a
concise way of presenting the relationships between
the JMAK parameters and the nucleation and growth
parameters for the handful of special modes of nuclea-
tion and growth mentioned above. Of course, the
JMAK parameters will always be related to the
nucleation and growth parameters, but not necessarily
through Egs. (7)-(9).

It is also important to realise that the fact that
JMAK Kkinetics are a convolution of nucleation and
growth kinetics means that we cannot, in principle,
obtain any information about the individual nucleation
and growth processes from the JMAK parameters
alone.

2.2. The isothermal JMAK rate equation

Having found the fraction transformed as a function
of time, we can calculate the isothermal transforma-
tion rate equation by differentiating Eq. (4a) with
respect to time:

dx

b (1) = nkt" " exp(—kt"). (10)
Eliminating the explicit time dependence of Eq. (10)
by using Eq. (4a), we have

dx _

7 = nk'/"(1 — x)(=In(1 — x))"=/m, (11)
Eq. (11) is called the isothermal JMAK transformation
rate equation.

3. The linear heating JMAK equation

Egs. (1b)—(3) have been evaluated under linear heat-
ing conditions for a number of nucleation and growth
mechanisms [11]. These are: site-saturated nucleation,
zero nucleation rate or a constant nucleation rate (i.e.
a nucleation rate that only has an implicit time depen-
dence through 7) and for interface-controlled growth.
In this section, we shall first review the results for
diffusion-controlled growth and then derive the linear
heating JMAK equations for interface-controlled
growth.

3.1. The result for interface-controlled growth

The linear heating JMAK equation for interface-
controlled growth can be written as

x(t) = 1 —exp(—kK't*"), (12a)
with

/ _ 1 pn AH
k(ﬁvT) - koﬁ exp(_kBT)a (12b)

where f3 is the heating rate, T = fit, and n and AH are
given by Egs. (7) and (8) for ¢ = 1, i.e. for interface-
controlled growth. The expression for k, is shown to
be [11]

kB 1+be
ko = 8l5Go Cy (E—) , (13)
g
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which, like Eq. (9), is also not valid fora = 0. C; is a
constant of order unity, to be discussed in detail in
Section 3.1.

Comparing the isothermal and the linear heating
JMAK equations, we see that

1. the Avrami exponents differ by a factor two;

2. the rate factor, kK'(f,T), in Eq. (12b) implicitly
depends on time through 7 = ft, and explicitly
depends on the heating rate through the " term.

Apart from implicitly assuming that Eqs. (6a) and
(6b) hold by using Egs. (5a) and (5b) for the nucleation
and growth rate, Egs. (6a) and (6b) are used explicitly
as an approximation in the derivation of Egs. (12a) and
(12b). As this puts a lot of importance on Eqs. (6a) and
(6b), we shall investigate how restrictive they are.
Obviously, the inequalities will always be satisfied
at the early stages of a linear heating experiment and
will always be violated if we wait long enough.
However, Eqs. (12a) and (12b) will essentially be
correct during the entire transformation when

E,
1< (14a)
! kg f
and

E
< —% (14b)
! kgp

where f; is the time at which the transformation is
effectively completed. Eqgs. (14a) and (14b) are, to a
certain extent, self-fulfilling: if the activation energies
for nucleation and growth are small, nucleation and
growth are fast, resulting in a small #. As this does not
tell us how restrictive Eqgs. (14a) and (14b) are, we
need to express #¢ in terms of the JMAK parameters.

Let us say that the transformation is over when
Xe(ty) =5 (i.e. when x(tf) = 1 —e™> = 0.99). From
Egs. (1a), (12a) and (12b), we see that this is equiva-
lent to saying

) AH
kyB" exp (— ki

As both the terms in Eq. (15) that depend on #; are
increasing functions of t;, we may substitute the
inequalities (14a) and (14b) into Eq. (15) and get

E 2n AH
K(=22) > 58" ) 16
() = sres(z) 19

>t§n _s. (15)

As long as AH is of the same order of magnitude as the
activation energies of nucleation and growth, the right
hand side of the inequality is of the order of 10-10°, as
experimental heating rates are of the order of 1 K/s
and the Avrami exponent lies in the range 0.5-4.5 [9].
For the transformation to be slow at room temperature,
we must have E, , > kgTR, so that the second term on
the left hand side is of the order 10'? or larger. As ki is
usually large too, the inequality is satisfied.

When AH is one or two orders of magnitude larger
than the activation energy for either nucleation or
growth, Eq. (16) can be violated. Physically, this
means that Eqs. (12) are not valid when the transfor-
mation is strongly dominated by either nucleation or
growth. Such cases, however, are not in the spirit of the
JMAK model and it has recently been shown that the
isothermal JIMAK equation is also not valid when the
transformation is dominated by growth [15].

3.2. Derivation for interface-controlled growth

In his derivation [11], Woldt uses the exponential
integral function to evaluate Eqs. (1b) and (3) under
linear heating conditions. This approach is mathema-
tically rather laborious. In the next section, we outline
a simpler approach and show that both approaches
yield the same result. Essentially, we use Eqs. (6a) and
(6b) as an approximation earlier than Woldt does.

Let us consider the special case of a constant
nucleation rate and interface-controlled growth, with
the nucleation and growth rates given by Egs. (5a) and
(5b). Eq. (3) then becomes

R(t,7) = Go/ exp (— 0619> do, 17

where we have defined o = kgff/E,. Substituting
& =1/0, we have

1/t
R(t,7) = -Gy

1/t

Now, if we assume that, as & runs from 1/z to 1/, the
exp(—¢/a) term varies much more quickly than the &2
term, we have

E2exp < f) dé. (18)

o

1/t
R(t,7) ~ —Goé? exp (— §> dé
1/t o

- (&) v -sor

o
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with ¢ = 1, where we have written for convenience

0= G exp - ). 20)

ot
Putting Egs. (2) and (19) into (1b) gives
Co [! . &
w0 =22 [0~ exn(- ) an

where we have defined Cy = gIOG’(;C and € = E, /Eg.

The power term in Eq. (21) can be expanded as a
binomial series and the integral evaluated analytically.
This is done in Appendix A and gives

E, + bcE,
kg St ’

where k{ is given by Eq. (13) with C; (also found in
Eq. (13)) shown to be equal to

Ci(be,e) = i(i")% (23)

=0

(1) = k6ﬁ1+bct2(1+bc) exp < (22)

Putting Eq. (22) back into Eq. (1a) and using Egs. (7)—
(9) finally leads to Egs. (12a) and (12b) for a = 1 and
¢ = 1, completing the derivation.

Eq. (23) is beautifully concise and gives the most
general expression for Cy, but it does not give much
physical insight in how C; depends on bc and . For the
cases considered, i.e. one, two or three-dimensional
interface-controlled growth, bc can take the values
1,2 or 3. For integer values of bc, the series terminates
when j = bc; the binomial coefficients are then equal
to zero when j > bc. Evaluating the summation, we
find

Cl(lyg)ZH_—SZ, (24a)
2

0= e (240)

€i(3,9 : (240

T 6t 112 + 680 + ¢

Egs. (24a) and (24c) show that C; is a smooth,
decreasing function of ¢ (=E,/E,) and that it is of
the order unity when ¢ ranges from 0.5 to 2. Note that
C(bc,1) = (1 +bc) "

Egs. (22) and (24) are identical to Woldt’s result.
This implies that the approximations we made in
deriving Egs. (19) and (22) are valid as long as
Egs. (6a) and (6b) hold.

3.3. Derivation for diffusion-controlled growth

When growth of the particles is controlled by
diffusion, their growth rate is equal to

dR D

G(t) _E_Ev

(25)
provided the diffusion constant, D, does not change
during the transformation and depends on temperature
through

Eq
D(T) = D -—— . 26
=) "
Substituting Eq. (26) into Eq. (25) and separating the
variables gives

R 1 ! 1
/ R'dR = ER2 = DO/ exp (— E) do, 27)
0 T

where we have defined o = kgf3/E4. Using the same
approximation as we used when deriving Eq. (19), we
can evaluate the integral on the right hand side of
Eq. (27) to obtain

R(t,7) = <%

o
where ¢ =0.5. The rest of the derivation is now
analogous to the derivation for interface-controlled
growth, presented in the previous section; see Eq. (19)
and following. This finally leads to Eq. (22) with
c¢=0.5, E; = Eq and k{ given by Eq. (13) with G,
replaced by 2Dy; C; in Eq. (13) is again given by
Eq. (23). However, as we now have ¢ = 0.5, bc can
take the non-integer values bc = 0.5 and 1.5, for
which the series in Eq. (23) does not terminate.
Fortunately, it converges very quickly. Fig. 1 shows
that taking the first five terms in Eq. (23) gives values
for C1(0.5, ¢) and C;(1.5, ¢) that compare very well
with solutions obtained by numerically solving the
integral in Eq. (21) for bc = 0.5 and 1.5.

This completes our derivation of Egs. (12a) and
(12b) for diffusion-controlled growth.

)cmr) P, 8)

3.4. The linear heating JMAK rate equation

As for the isothermal case (see Section 2 B), we can
calculate the linear heating JMAK transformation rate
equation by differentiating Eqs. (12a) and (12b) with
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2.0

mhc=035

CI (bC,S)

£

Fig. 1. Plot of C; from Eq. (13) vs. ¢ = E, /E,, the ratio of the
activation energies for nucleation and growth, for two non-integer
values of bc. Squares: numerical solutions of C(0.5, ¢). Dots:
numerical solutions of C;(1.5, ¢). Full lines: plots of C,(bc, &) for
the corresponding values of bc, obtained by truncating Eq. (23)
after the fifth term.

respect to time. In the limit AH/2n > kgT (which is
hardly restrictive, as we already have E,, > kgT and
E, > kgT), we then find that

dx AH n1/n n—1)/n
) =2 ()" (1= x)(-In(1 —x) "

(29)

We now see that, unlike x(¢), dx/dr has the same form
for both the isothermal and the linear heating case,
apart from the different pre-factors: nké/ " for Eq. (11)
and (k(’))l/ "AH /kg for Eq. (29) (note that the heating
rate drops out) and for the fact that Eq. (29) has an
implicit time dependence through the temperature
dependence of the rate factor, Eq. (12b). Eq. (29) is
a very important result; there has been a lot of spec-
ulation in the literature on the correct form of the non-
isothermal transformation rate equation. Eq. (11) is
often assumed to be valid for any temperature—time
path; this is not generally correct as Eq. (11) is
obtained from the isothermal JMAK equation. Hen-
derson has argued that “if it can be shown that the
transformation rate depends only on the state vari-
ables of fraction transformed and temperature, and
not on the thermal history” [12], then Eq. (11) is also
valid for non-isothermal transformations. In a latter
article [13], Henderson argues that, in general, the
transformation rate does depend on the thermal history,
and that Eq. (11) is only valid for non-isothermal reac-
tions for certain special cases, namely site-saturated

nucleation, a zero nucleation rate and isokinetic trans-
formations (i.e. transformation for which E,, = E,). It
thus follows that Eqs. (11) and (29) should both
describe the transformation rate under linear heating
conditions, when ¢ = E,/E, = 1. Therefore, the pre-
factors of Egs. (11) and (29) should be the same. We
shall verify that this is indeed so, taking a constant
nucleation rate (¢ = 1) as an example.
The ratio, p, of the pre-factors is in that case

AH (KN\'"
=—\=] . 30
= (ko) (30)
This ratio should be equal to one for E, = E, = AH /n.
With Egs. (9) and (13), this gives

AH k (1+bc)/n
- . B) : 31)

o 1 1/n B
p e (nCy(bc, 1)) (AH

which is indeed equal to one, as Cj(bc,1)=
(14+be)™" =n~" for the case considered. Because
of the remarkable consistency between the two
approaches, we may feel confident that they are both
correct. However, this only justifies the use of Eq. (11)
for linear heating conditions. There may well be non-
isothermal conditions for which Eq. (11) does not
hold. Whether it does or not may be checked by
integrating Eqs. (1a) and (3) for the temperature—time
path in question.

The fact that Egs. (11) and (29) are proportional
means that under linear heating conditions the trans-
formation rate is indeed independent on thermal
history.

4. Determining the linear heating parameters

Now that we have shown that Eq. (11) is propor-
tional to Eq. (29), we may use the methods outlined by
Henderson [12] to obtain the JMAK parameters.
However, there are a few reasons why we would like
to derive these methods here. Firstly, their derivation
becomes much simpler now that we have derived
Egs. (12a) and (12b), in addition to Eq. (29). Secondly,
we wish to point out that the derivations are valid as
long as Eqgs. (6a) and (6b) hold and that no additional
assumptions need to be made. Thirdly, we found that
one of our results contradicts Henderson’s.
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4.1. Peak shift methods: AH/n

During the transformation, after most of the nuclei
have formed and the particles grow, the transformation
rate goes through a maximum, before impingement of
the particles of the transformed phase brings the
process to an end. This peak in dx/d¢ occurs when
d?x/d> = 0. The temperature at which this peak
occurs is denoted T,. Taking the second derivative
of Egs. (12a) and (12b) with respect to time and setting
it to zero gives

AH AH
2n—2)=(—-+2 T,). 32
(kBTp e ) (kBTp - n)xe( ?) 32
Assuming, as before, that AH/2n > kgT, we see that
xe(Tp) = 1. (33)

This means that under linear heating conditions, the
extended volume is equal to the real volume of the
system at the peak in the transformation rate. This is
mostly a numerical coincidence, a consequence of
Egs. (6a) and (6b); from Egs. (4a) and (4b), it can
easily be shown that under isothermal conditions, we
have x¢(7p) = (n—1)/n. Nonetheless, x. =1 has
some physical significance, as, during the transforma-
tion, the transformation rate is decreased by impinge-
ment and impingement becomes important when the
extended volume approaches the real volume.

The true importance of Eq. (33) lies in the fact that
the fraction transformed at the peak in the transforma-
tion rate is equal to x(T},) = 1 —e~! = 0.63, regard-
less of the heating rate. This fact lies at the heart of
peak shift methods such as Kissinger analysis [12,16].
From Egs. (12b) and (33), we have

2\" AH
kg (ﬁ) exp(— ﬁ) =1. (34)

Eq. (34) shows that the temperature, however, at which
the maximum in the transformation rate occurs is a
function of the heating rate: T, increases as a function
of ¢. Hence, by measuring T, for different heating
rates, we can obtain AH and k{, from Eq. (34). To do so,
we take the logarithm at both sides of Eq. (34) and
write

In ﬁ :llnk(')— AH . (35)
Tg n nkgT),

Having measured 7,(f8), we can plot ln(ﬁ/TS) versus
/T, (a so-called “Kissinger plot”); this should give a
straight line with slope AH/nkg that intercepts the
vertical axis at (1/n)Inkj.

Similarly, it can be shown from Eq. (34) that plots of
In(B/T,) versus 1/T,, (a Marseglia plot [17]) or simply
In(¢p) versus 1/T, (an Ozawa plot [18,19]) will also
give a straight line with the same slope and intersect as
Eq. (35), provided Egs. (6a) and (6b) hold. Thus, all
three peak shift methods are formally equivalent in the
JMAK framework. This contradicts Baram et al. who
claim Ozawa plots are compatible with JMAK kinetics
but Kissinger plots are not. The discrepancy is due to
the fact that Baram and Erukhimovitch [20] do not use
Egs. (6a) and (6b) throughout their derivation. They
implicitly use Eq. (6b) to evaluate the integral in
Eq. (3) to correctly show that Ozawa analysis is
valid. However, from this it cannot be concluded that
Kissinger analysis is not valid, as Eqgs. (6a) and (6b)
imply equivalence of the two methods.

4.2. Determining AH, n and kj,

We can determine AH from a measurement of the
fraction transformed, x(7), or of the transformation
rate, dx/dt.

Eqgs (12a) and (12b) can be rewritten as

/

In(—In(1 — x)) = ln(ﬁ> —|—2nlnT—kA—I—7{. (36)

" B
Taking the derivative with respect to 1/T gives
din(—In(1 — AH AH
din(CIn(l =x) _ _p,p AH _8H g

d(1/7) kg kg

where again we have used that AH/2n > kgT. Hence,
plotting In(—In(1—x)) versus 1/T gives a straight line
with slope —AH/kg that intercepts the vertical axis at
In(ko/ ")

Starting from Eq. (29), it can be shown that

dIn(dx/dt AH

Y~ - ) (38)
Hence, plotting In(dx/d¢) versus 1/T gives a curve with
a slope equal to —AH/kg in the limit t — 0. This result
contradicts Henderson’s result [12]; he concludes
that a plot of In(dx/dr) versus 1/7 should give a straight
line with a slope approximately equal to —AH/nkg
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(and not —AH/kg). In Appendix B, we explain where
we believe that Henderson’s derivation goes wrong.

Having obtained values for AH/n and AH, we can
calculate n.

Knowing n, we obtain k[, from the intercept with the
vertical axis in our Kissinger plot or, alternatively,
from the constant in Eq. (36).

It should be noted that it may be more convenient to
find the JIMAK parameters by fitting Eqgs. (12a) and
(12b) or (29) to a measurement of x(¢) or dx/d#(¢), using
AH, n and kj as fit parameters [12].

Obviously, the methods described above only make
sense if the transformation follows JMAK Kkinetics.
Methods to check if this is indeed the case are
described by Malek [21].

5. The hard impingement approximation

The derivations of the isothermal and linear heating
JMAK equations for diffusion-controlled growth are
based on the assumption that the growth rate is given
by Eq. (25). In the context of nucleation and growth
kinetics, this approximation is called the ‘‘hard impin-
gement approximation”. It ignores the fact that
growth will slow down before the particles physically
touch, due to the untransformed regions saturating
with the element(s) that diffuses away from the inter-
face. Hence, the approximation can only be expected
to hold for small x. However, we have seen that, under
linear heating conditions, the peak in the transforma-
tion rate occurs at x = 0.63, which is not small. Hence,
Kissinger analysis will only give an approximate value
for the AH/n that determines the initial stages of the
transformation. Similarly, Eq. (36) will give a curve,
with slope equal to —AH/kg only for small x. The
difference between the slope of Eq. (36) at x = 0 and
at x = 0.63 gives a qualitative idea of the inaccuracy
of Kissinger analysis. For a more quantitative treat-
ment, Egs. (1a) and (3) should be solved for diffusion-
controlled growth with soft impingement.

6. Conclusions
1. The linear heating JMAK equation can be derived

analytically for the same cases and under the same
conditions as the isothermal JMAK equation.

2. The JMAK reaction rate equations under isother-
mal and linear heating conditions are proportional.

3. Isothermal and linear heating transformations are
governed by the same effective activation energy,
AH. The linear heating Avrami exponent is equal to
2n, where n is the isothermal Avrami exponent. The
pre-exponential constants, ko and kg, do not transfer.

4. AH and n can be obtained from a linear heating
experiment.

5. Peak shift methods such as Kissinger analysis,
Marseglia and Ozawa plots are formally equiva-
lent within the JMAK framework and may be used
to analyse experimental data.

In this article, we hope to have helped to elucidated
a few remaining problems regarding the transferability
of the isothermal and linear heating JMAK parameters.

Appendix A

Writing the power series in Eq. (21) as a binomial
expansion, we have

Xe(t) = %g(—l)f (l;c ) k@) (1), (A.1)

where we have changed the order of integration and
summation and defined

— ! j &
J(t) = /0 ) exp(— E) dr. (A2)
With Eq. (20), we can write Eq. (A.2) as

t .
T 2%k _] +é
J(t) = tl/lg}) ; (at) exp( e ) dr
1 U o 242k i1e
—tim [ () e (<0 ao
=00 /¢ 0 o
1 242k 1/ ;
~ —lim — (z) / exp (]ﬁ 0) do
r—00% \6 1/ o

242 .
() exp (—] + 8) . (A.3)

- a(j +e¢) ot
Putting Eq. (A.3) back into Eq. (A.1) gives
_ Cox~( be (—1)* 2(14be)
=23 (")

=0 \J

b
X exp < ¢ ; C> , (A.4)
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where we have substituted Eq. (20). Using Eq. (13)
and our abbreviations for Cy, o and ¢, and defining

Ci(be,e) = i<b0> (*ly, (A.5)

\J)ite

we finally obtain

(A.6)

Xe(f) _ ké)ﬂ]+bcl2(l+bc) exp (_ En + bCEg) .

kg ft
Appendix B

Henderson starts his derivation from the isothermal
JMAK transformation rate equation

dr (x) = nk'/"F(x), (B.1)
dr
AH

T) = - B.2
) = hoexn( 7). (62)
F(x) = (1 — x)(=In(1 — x))"= D/, (B.3)
Taking the derivative with respect to 1/7, gives
din(dx/dr) AH  dInF(x)
— - B.4

d(1/7) ks | d(1/T) (B4)

He then essentially assumes that the second term on
the right hand side in Eq. (B.4) is small compared to
the first. However, evaluating the term in question
explicitly, gives

dinF(x) AH AH AH (nkB ﬂ) " e

d(1/T) nkg ks ks \ AH

(B.5)

which is by no means small compared to the first term
on the right hand side of Eq. (B.4).

Putting Eq. (B.5) back into Eq. (B.4) gives

din(dx/dr)  AH {1 B <nk3ﬁ> " ktzn} _

d1/T) ks AH

(B.6)

From Egs. (9) and (13), it can be seen that Eq. (B.6)
reduces to Eq. (38) for E, = E, = AH/n, as it should.
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